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with Applications in 

S U M M A R Y  
An extension of geometric programming to handle rational functions of posynomials is presented. The solution 
technique consists of successive approximations of posynomials and solution of ordinary geometric programs. An 
example of a multistage heat exchanger system optimization illustrates the computational method. 

1. Introduction 

This work deals with a new optimization technique motivated by research in the area of optimal 
engineering design by geometric programming [1,2, 3, 7,9, 14]. A serious limitation in the 
successful application of geometric programming to optimizing engineering design has been 
that all the functions involved in the problem were required to be posynomials, i.e. generalized 
polynomials with positive coefficients. Recently, Avriel and Williams [5] extended the theory 
of geometric programming to include generalized polynomials with unrestricted coefficients. 
Some aspects of this theory were also treated by Passy and Wilde [13], [14], Blau and Wilde 
[7], Eben and Ferron [11] and others. The theory developed in [5] is different from all previous 
attempts to generalize geometric programming. Duffin [10], however, has recently reported 
that several other papers, in manuscript form at the time of the writing, describe similar 
approaches. It is based on a method for finding the minimum of an objective function over sets 
which are the intersections of certain convex sets with complements of convex sets [4]. Such an 
optimization problem is called complementary convex programming. The present work 
concerns a method for finding the minimum of a function over sets which can be viewed as 
intersections of posynomial sets (as they appear in geometric programming) with complements 
of posynomial sets. Such an optimization problem we call Complementary Geometric Program- 
ming (CGP). 

Most recent textbooks on optimization theory and practice contain sufficient background 
material on geometric programming for the understanding of this paper, see, e.g. [6, 9, 15, 16]. 
We shall therefore, repeat here only those aspects of geometric programming which are ab- 
Solutely necessary for the subject of this paper. 

2. Problem Statement 

A posynomial P is a real valued function consisting of a finite sum of positive terms, given by 

P(x) = ~ cj ~I xT'J (1) 
j= l  i=1 

defined for positive values of the vector x = (x 1 .. . . .  x~), where the cj are positive constants and 
the ai i are arbitrary real constants. 
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The primal problem of geometric programming can be written as 

(PGP) rain P0 (x) 

subject to 

P~ (x) =< l ,  k = 1 . . . . .  K 

x > 0  

(2) 

(3) 
(4) 

where the Pk, k = 0 . . . . .  K, are posynomials consisting of J (k) terms. The set of points satisfying 
(3) and (4) is called a posynomial set. 

Associated with the above primal problem is the following dua 1 problem of geometric 
programming: 

K J(k) 

(DGP) max v(6) = l~ l~ (Cjk/6jk)aJk(2k) x~ (5) 
k=0  j = l  

where 
Y(k) 

2k = Z 6jk, k =  0 . . . . .  K (6) 
j = l  

and subject to 
J(o) 

5j0 = 1 (7) 
j = l  

K J(k) 

Z 2ai k  k=0, i = 1  . . . . .  m (st 
k = 0  j = l  

5 = (6~o . . . . .  6:(K),tC ) > 0  ( 9 )  

A primal geometric program is said to be superconsistent if there exists a vector 

2 > 0  (10) 

such that 

Pk(2) < 1, k = 1 . . . . .  K (11) 

The basic duality theorem of geometric programming [-9] states then, that if a primal geo- 
metric program is superconsistent and has an optimal solution x*, then its corresponding dual 
problem also has an optimal solution 5". Moreover, the optimal values of the objective 
functions Po(x*) and v(6*) are equal and the primal and dual optimal values are related by 

= ( x * ) / P o  (x*) 02) 
- * * . ( 1 3 )  6j*--Pjk(X )2 k k = l ,  . . , K ,  2 " > 0  

The above duality theorem has important computational consequences, since it is usually 
easier to solve the dual problem, which has linear constraints, than the primal problem having 
nonlinear inequality constraints. Equations (12) and (13) may then be used to obtain the primal 
optimal solution x* given the dual variables 6". (In general, (12) and (13) are best solved by 
taking logarithms of both sides and obtaining simultaneous equations, linear in log x). 

Primal and dual geometric programs can be easily transformed to convex programming 
problems by a suitable change of variables and a monotonic transformation. Accordingly, 
every local optimum of a primal or dual geometric program is also a global optimum. Thus, 
geometric programs are amenable to analysis and numerical solution by nonlinear convex 
programming methods. 

Suppose now that we do not restrict the c i in (1) to be positive constants, i.e. they can take on 
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any real value. In this case, a sum of terms as in (1) can be viewed as a difference of two 
posynomials. Letting R k, S k be posynomials for k = 0 . . . . .  K, we can consider then the following 
problem 

(QGP) min R 0 (x) - S o (x) (14) 

subject to 

Rx(x)--Sk(X)< 1, k = 1 . . . . .  K (15) 

x > 0 (16) 

in which some of the posynomials may be absent. The objective function Ro ( x ) -  So(x) is, 
however, assumed to be positive for all feasible x. This is not a serious restriction since a positive 
constant can be always added to R o to make (14) positive. 

In a further generalization of geometric programming we can have rational functions of 
posynomials in the objective function and constraints, i.e. we can consider 

(RGP) min R~ (x) - S O (x) (17) 
~o(X)-~0(x)  

subject to 

R~(x)--Sk(x) < 1 k = 1,. K (lS) 
= ' " 

x > 0 (19) 

where the R k, S k, Rk, Sk are all posynomials and the objective function is, again, assumed to be 
positive for all feasible x. In addition, the denominators of (17) and (18) must not vanish in the 
Feasible region. 

By introducing a new variable, x0, and by elementary algebraic manipulations, it is clear that 
Lhe QGP and R G P  problems can be written as complementary geometric programs 

'CGP) rain Xo (20) 

gubject to 

Pk(X) < 1 k = O , .  K (21) 
Qk(X ) . . . . .  

x = (x 0 . . . . .  xm) > 0 (22) 

a, here the Pk and Qk are posynomials. 
Complementary geometric programming enables one to handle a much larger family of 

mgineering optimization problems than ordinary geometric programming. This can be attain- 
ed, however, only by sacrificing certain remarkable properties of geometric programs. Comple- 
aaentary geometric programs can have local minima which are not global minima and there is 
ao single transformation to convex programming and no dual program to CGP (in the ordinary 
~ense) can be written. 

3. The Algorithm 

Fhe algorithm to solve complementary geometric programs is based on the observation that a 
posynomial divided by a posynomial consisting of only one term is again a posynomial. If, 
:herefore, each of the Qk(X) in (21) are approximated by one term posynomials, we obtain an 
~rdinary geometric program. The algorithm consists of successively approximating the 
Qk(X) by one term posynomials so as to produce a sequence of approximating geometric 
programs whose solutions converge to a local minimum of the given C G P  program. 

The approximation is based on the arithmetic-geometric inequality 
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Zj gj >_ IIj [/~j/6j] a~ (23) 

which holds for any positive numbers/~j and any non-negative numbers 6; such that I2 6j = 1. 
Since the Qk(X) are of the form (omitting for the moment the k subscript) 

Q(x) = yjqj(x) ; q3(x) = cjHix~J 

we may take any x > 0, and put 

p j=qj (x )"  6 j -  qj(X) 
' Oj (X)" 

From (23), therefore 

[ 0 (X~ \qA~)/e(x) 
Q(x) > I I j ~  qj(x)) (24) 

The right hand side of (24) is a one term posynomial; it is the approximation for Q (x) at x 
and will be denoted by Q (x, x). 

The first step in solving a complementary geometric program then is to select some feasible 
point, call it x (u, and replace the Qk(X) by Qk(X, x(1)). Thus (20), (21), (22) become 

rain Xo (25) 

subject to 

ek( ) < 1  k = 0 , 1 ,  K (26) 
Q (x, x . . . . . .  

x > 0 (27) 

This ordinary geometric program is solved for some optimal solution; call it x (2). Q(x) is then 
replaced by Q(x, x (2~) and a new optimal solution x (3) is obtained, etc. Note that, by (24), if 
x (a> is feasible, than so is x (2), since 

1 >_ pk(x~2>) > ek(x<2)) 
- Qk(X(2), x (1)) = Qk(X(2)) 

The sequence x (~), therefore, is feasible. Subject to mild regularity conditions (see [5] for details) 
this sequence will converge to a local minimum of the complementary geometric program. 

An interesting computational aspect of the above algorithm is the "degree of difficulty" of 
a complementary geometric programming problem. 

The notion of "degree of difficulty" of an ordinary geometric program was introduced in 
[9]. For a given primal (or dual) geometric program the degree of difficulty is equal to the total 
number of posynomial terms (equals number of dual variables) appearing in the problem less 
(m + 1), where m is the number of primal variables (orthogonality constants (8)). The degree of 
difficulty is essentially equal to the number of independent variables over which the dual 
objective function is to be maximized, subject to the nonnegativity constraints of all the dual 
variables. Well formulated geometric programs always have a nonnegative degree of difficulty. 
For complementary geometric programs the degree of difficulty is defined [5] as the total 
number of posynomial terms in the numerators of (21) less (m+ 1), where m+ 1 is the number 
of primal variables xo . . . . .  xm. 

In other words, the degree of difficulty of complementary geometric programs is equal to the 
degree of difficulty of the approximating ordinary geometric programs, solved at each iteration. 
This means, then, that the degree of difficulty of a CGP  problem is independent of the number 
of terms appearing in the denominators of constraints (21). Thus a CGP problem with primal 
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variables Xo, xl . . . . .  Xm and a total number of m posynomial terms in the numerators of the 
constraints 

ek(x) < 1, k = 0 . . . . .  K (28) 
Qk(x) - 

h a s  zero degrees of difficulty and at each iteration we only solve a square system of non- 
homogeneous linear equations. 

The following example illustrates the notions introduced in this paper by a simple example. 
The second example demonstrates applications of complementary geometric programming to 
engineering design problems. 

Example 1. A Complementary Geometric Program with Zero Degrees of Difficulty 

To illustrate the method of solution of complementary geometric programs consider the fol- 
lowing problem : 

min Xo (29) 

8 x 2 + 8 x l  >11 (30) 

- X o + 8 x l  < 2 (31) 

Xo>0 ,  x l > 0  (32) 

First, we rearrange (30) and (31) to bring them into the form of constraints (21). We obtain 

Po(x) 11/8 
- _< 1 ( 3 3 )  

Qo(x) x +x, - 

P1 (x) 8 x 1 
- < 1 ( 3 4 )  

Q,(x) 2 + x  o = 

and our CGP problem is to minimize Xo subject to constraints (32), (33) and (34). 
We first approximate the denominators of (33) and (34) by the formula (24). For any positive 

x = (x0, xl) we have 

\ Xo / 

Suppose we start at the feasible point x m =  (4, �88 Then 

Qo(x, x ~1)) = 65(1)192/65 (Xo) 128/65 (Xl) TM 

Q1 (x, x (1)) --= 6(4) -2/3 (x0) 2/3 

so that the first approximating geometric program is 

min Xo 

subject to 

x o >0  x 1 > 0  

lll ~ (4)127/65] Xo 128/65 Xl 1/65 ~ 1 

[�89 Xo 2/3 Xl ~ I 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

Journal of Engineering Math., Vol. 5 (1971) 187-194 



192 M. Avriel and A. C. Williams 

This program has a total number of three posynomial terms and two primal variables, hence 
it has zero degrees of difficulty. Its solution can be easily found by solving the following set of 
linear equations (dual constraints) 

61 = 1 

81-1/6532+ 63 = 0  (43) 

81 -- 128/65 8~--2/3 83 = 0 

which has the unique solution 8~1)= 1, 8~1~= 195/386 and 8(31)= 3/386. 
Substituting these dual variables into the dual objective function we get 

v{~ !1)) - 1.139 (44) 

By solving equations (12) and (13) we obtain for the optimal variables of the first approximating 
geometric program Xo ~ - 1.139 and x 1 ~-0.325. Next we choose x~2)=(1.139, 0.325), and re- 
approximate Qo and Q1 around this point, formulate and solve a new ordinary geometric 
program, etc. The following table illustrates the convergence of the algorithm to the desired 
minimum. 

TABLE I 

Convergence to Optimum in Example 1. 

Iteration Xo xl 

0 4.000 0.250 
1 . 1.139 0.325 
2 1.009 0.375 
3 1.000 0.375 

Example 2. Multistage Heat Exchanger Design by Complementary Geometric Programming 

Complementary geometric programming will now be applied to a simple three-stage heat 
exchanger design problem, solved previously by Boas by dynamic programming [8] and also 
by Fan and Wang via the maximum principle [12]. Our purpose here is to demonstrate the 
method of complementary geometric programming by a simple example without comparing 
its efficiency to other well-known optimization techniques. Consider then a system of three heat 
exchangers as illustrated in Figure 1. 

Y Stage 1 Stage 2 

; 2 
t12 tll t22 t21 t32 

Figure 1. Three Stage Heat Exchanger System. 

Stage 3 I T3T__ 

t31 

A fluid having a given flow rate W and specific heat Cp is heated from temperature T o to T 3 
by passing three heat exchangers in series. In each heat exchanger (stage) the cold stream is 
heated by a hot fluid having the same flow rate W and specific heat C v as the cold stream. The 
temperatures of the hot fluid entering the heat exchangers, t 11, t21 and t 31 and the overall heat 
transfer coefficients U1, Uz, U3 of the exchangers are known constants. Optimal design involves 
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minimizing the sum of the heat transfer areas of the three exchangers, A r = A 1 + A2 + A3. As in 
[3] we write all the design relations as inequalities rather than equations, the sense of the in- 
equalities being determined by physical reasons. 

There are three heat balances expressing the fact that the rate of heat transferred to the cold 
fluid is less than or equal to the rate of heat lost by the hot stream: 

WCp (Ti - Yi_ 2) ~ WCp (tll - ti2), i = 1, 2, 3 (45) 

or 

Ti+tiz<=til+Ti_a, i = 1 , 2 , 3  (46) 

Similarly, we can write three heat transfer inequalities: 

WCp(T~-T~_I) < U~A~(tl2-T~_I), i =  1, 2, 3 (47) 

Rearranging (46) and (47) we get the following complementary geometric program: 

min A r 

subject to 

AI +A2+A3 

A r  

Tl+ta2  _< 1 
t l l  + To - 

T2 q-t22 
- - < 1  
t21+ T1 - 

(48) 

< 1 (49) 

(50) 

(51) 

Y3-~-t32 < 1 

t31 q_ T2 -- 

T~ + FJ1A1 To 
< 1  

To + ~91 AI t12 = 

T2 + ~22A2 rl  
_<1 

r lq-  U2A2t22 -- 

T3 q-U3A3 T 2 G 1  
T2+ G A 3 t 3 2  - 

Ai>0 ,  t i2>0, i = 1 , 2 , 3 ;  

where 

= U~/WCp, i=  i, 2, 3. 

T~>0, i = 1 , 2 ;  A t > 0  

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

This program has 15 - 9 = 6 degrees of difficulty. 
For a numerical solution of the above program we used the same data as in [8] and [12]" 

T o = 100~ T 3 = 500~ W C p =  105 (B. t .u . /h r -~  and 

i ~1 (~ Ui(B.t .u. /hr-sq . R - - ~  

1 300 120 
2 400 80 
3 600 40 

It can be seen in the following table that starting with a guess of A T = 15,000 we attained 
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convergence in four iterations to a minimum total heat transfer area of approximately 7049 
sq. ft., similar to the values reported in [8] and [12]. 

TABLE II 

Solution of Three Stage Heat Exchanger Design Problem 

Iteration A r A 1 A z A 3 T 1 T 2 t12 t2e t32 

0 15000 5000 5000 5000 200 350 150 225 425 
1 7664 783 2044 4837 176 308 224 268 407 
2 7120 599 1590 4931 182 303 218 280 403 
3 7049 579 1370 5100 182 296 218 286 396 
4 7049 567 1357 5125 181 295 219 286 395 

This solution was obtained by an experimental computer code written for complementary 
geometric programs by M. Rusin and G. Crane at the Central Research Laboratories of Mobil 
Research and Development Corp., Princeton, New Jersey. 

Conclusions 

Complementary geometric programming offers a significant extension of the applicability of 
geometric programming to engineering optimization problems. An algorithm for the solution 
of complementary geometric programming problems by successive solutions of certain 
approximating ordinary geometric programs was presented. Thus complementary geometric 
programs can be solved by existing computer codes for geometric programming after introduc- 
ing some minor modifications. The degree of difficulty of each of the approximating programs 
is equal to the number of posynomial terms appearing in the numerators of the constraints of 
a CGP problem less the number of variables in the problem and is independent of the number 
of terms in the denominators of the constraints. In case of a QGP problem, i.e. a geometric 
programming type problem with positive and negative terms, this is equivalent to saying that 
the degree of difficulty is independent of the number of negative terms. 

Application of CGP to engineering design problems was demonstrated by finding the mini- 
mum total heat transfer area of a three-stage heat exchanger system. The solution obtained 
in four iterations verified previous solutions of the same problem. 
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